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Control of flexible systems under degradation or failure of sensors/actuators is consid-
ered. A Linear Matrix Inequality framework is used to synthesize Hcf-based controllers,
which provide good disturbance rejection while capable of tolerating real parameter un-
certainties in the system model, as well as potential degradation or failure of the control
system hardware. In this approach, a one-at-a-time failure scenario is considered, wherein
no more than one sensor or actuator is allowed to fall at any given time. A numerical
example involving control synthesis for a two-dimensional flexible system is presented to
demonstrate the feasibility of the proposed approach.

Introduction

Control design for flexible syster_s is especially chal-

lenging because these systems have a large number of

modes with inherently small damping, some of which

may reside within the desired control bandwidth. To

exacerbate tile problem further, the parameters asso-

ciated with flexible systems, which are typically in

modal form, are subject to varying degree of uncer-

tainty. These include the modal frequencies, damping

ratios, and shapes. A robust control design must take

into account these uncertainties, which are generally

modeled as parametric and/or non-parametric model

uncertainties. Parametric uncertainties include tile

model uncertainties for those modes that are included

in the model, whereas non-parametric uncertainties

cover model uncertainties associated with the trun-

cated modes. Flexible system control must provide at

the least robust stability, and preferably, robust perfor-

mance. To date, numerous works have been published

in the literature dealing with various aspects of robust

control of flexible systems. 1 3 Control design methods,

such as H:¢, Structured Singular Value Approach (p),

and dissipative and passive techniques have provided a

systematic framework for design of robust controllers

for flexible systems.

The problem considered here goes beyond robust

control of flexible systems in that a control design

methodology is sought to rmt only provide robustness

against model uncertainties, but also accommodate

control system hardware failures, such as sensor or

actuator failures. Generally, sensor/actuator failure
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can be divided into soft failures or hard failures. Soft

failure includes a partial loss of the instrument, re-

sulting in an input-output degradation, i.e., a gain

and phase change in tile dynamics of the instrument.

Hard failure refers to the total loss of the instru-

ment. Since there is lack of methodology to deal

with both soft and hard failures in a unified setting,

control design and accommodation for each have fol-

lowed different paths. Soft failures have traditionally

been accommodated through control design with suffi-

cient stability guarantees. The stability guarantees for

single-input/single-output systems are typically hazl-

died through appropriate phase and gain margins. For

multi-input/multi-output systems, the stability mar-

gins required to deal with soft sensor/actuator failures

are attained through robust control design. 1'4 As

for hard failures, they have been typically handled

through introducing hardware redundancies in the de-

sign. As one instrument fails, the fault detection and

isolation system identifies the failing instrument, and

the control logic replaces the instrument with a fresh

redundant one. Of course, tile fault detection and iso-

lation is not an easy task. Moreover, guaranteeing the

system's safe behavior during tile detection, isolation,

and accommodation phases is even harder.

This paper presents a methodology for the uni-

fied treatment of soft and/or hard failure of sen-

sors/actuators in presence of model uncertainties. A"

Linear Matrix Inequality framework is used to synthe-

size Ho_-based controllers, which provide good distur-

bance rejection while capable of tolerating real param-

eter uncertainties in the system model, as well as po-

tential degradation or failure (soft and/or hard failure)

of the control system hardware. Here, only actuator

failure is considered, as the treatment of sensor failure

would be similar. In this approach, a one-at-a-time

failure scenario is considered, wherein no more than
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one sensor or actuator is allowed to fail at any given

time. This is reasonable approach considering that for

most aerospace systems the chance of concurrent mul-

tiple failures are very remote. A numerical example

involving control synthesis for a two-dimensional flex-

ible system is presented to demonstrate the feasibility

of tile proposed approach.

Plant Description

The dynamics of a typical flexible system are repre-

sented by a linear, time-invariant second-order system

for the purpose of control design. This includes flex-

ible spacecraft in tim so-called science mode, wherein

fine pointing is maintained to enable science measure-

ments. The order of this system can be in thousands or

teus of thousands of states. However, following model

reduction procedures (e.g., modal truncation, modal

cost analysis, etc.) t|m order of the system can be re-

duced to a manageable size. Finally, the dynamics of

the flexible system is rewritten is a first-order state-

space form, i.e,

As nmntioned previously, the paper considers the

degradation and/or failure of sensors and actuators.

This degradation/failure may take the form of a

gain variation, which affects the elements of the in-

put/output influence matrices, or it may take the form

of a phase variations, which would introduce additional

dynamics into the system. In general, hardware fail-

ure would bring about a combination of gain and phase

variations. Here, it is assumed that the variations in

the hardware (due to degradation) caal be modeled as a

linear augmentation to the system dynamics. Further-

more, for simplicity of presentation the paper considers

actuator failure case only. The sensor failure problem

may be handled in a very similar fashion. Additional

dynamics are augmented to the plant dynamics to ac-

count for potential uncertainties in tile actuators. The

actuator uncertainty dynamics is added to the nomi-

nal actuator dynamics (if any) and combined with the

plant. The combined dynamics is given by

= Az + Bw + Hp (6)

= fi.x + Bu +/_p (1)
y = Cz (7)

y = Ox (2)

yp = Lx + D_,u + Dpp (3)

where ,4 denote the state matrix, matrices /_, /4, C,

and L, represent the influence matrices for the control

inputs, disturbances, n|easurement outputs, and per-

formance outputs, respectively. The matrices Du, and

Dp, represent feed-through matrices associated with

the performance outputs; x denotes ttm state vector;

y denotes the measurement output vector; yp denotes

the performance output vector; and p represents the

exogenous disturbance vector.

In most cases, the dynamics of the flexible system

can be written in nlodal coordinates. This means

that the modal frequency and daznping information

is isolated in the state matrix, while the modal ampli-

tudes are isolated in the input/output influence ma-

trices. Typically, there is uncertainty associated with

all modal parazneters. However, the uncertainty in the

modal frequency, and to some degree the modal damp-

ing, is of a more critical importance in robust control

design. Hence, in this paper, the model uncertainty is

mainly characterized by real parameter uncertainties

in the state matrix fi,, i.e,

A=A(e); 0= [Or ... 0.1 (4)

where 0 is the uncertainty parameter vector, whose
elements are bounded as follows.

o,, [e, 071

y_ = Lx + Dww + Dpp (8)

where z = [ x ) denotes the combined state. The
Xa

state matrix and influence matrices are obtained from

the series connection of the plant dynamics (Eq. (1-

3)) with the actuator uncertainty weighting dynamics

given by

".i:_,= Aaxa + B,_w (9)

u = C,_x_, + Daw (10)

The order of the actuator uncertainty weighting dy-

namics would depend on the degree of gain and phase

variations one desires to account for due to degrada-

tion.

Control Synthesis

Control system design for flexible systems is chal-

lenging because of the their special dynamic charac-

teristics: a number of structural modes within the

controller bandwidth; low, closely spaced modal fre-

quencies; very small inherent damping; and insufficient

knowledge of tile parameters. For a control design

to be considered feasible, it nmst (i) be of reason-

ably low order; (ii) satisfy the nominal performance

specification; and (iii) be robust to errors in the de-

sign model. A feasible control design must be robust

to parametric and non-parametric uncertainties in the

system model. In this paper, the errors or failures

in the control system hardware, such as actuators, as
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well as uncertainties in modal parameters are consid-

ered. Specifically, uncertainties in modal frequencies

(which are typically the most critical) are considered.

Although, sensor degradation/failure is not considered

here, its treatment follows exactly that of actuator

degradation/failure problem. It is desirable to design a

controller that can accommodate, to a specified degree,

the failure and/or degradation of tim control system

hardware, while providing robust performance against

uncertainties in modal frequencies.

The basis of the control synthesis is an Ho_ design.

A block diagram of the closed,loop system, indicat-

ing the feedback structure of the plant, controller, and

uncertainty are shown in Figure 1. The performance

requirement is defined in terms of the weighted out-

put sensitivity transfer function from disturbances to

the performance output . The weighting function Wp

is typically chosen for each channel to provide good

disturbance rejection at low to mid frequencies as well

as to provide integral action to minimize steady-state

errors. An additional uncertainty in tile system model

in the form of unstructured input multiplicative is

used. The weighting function Wu, used to scale or dis-

tribute the uncertainty, is chosen to emphasize model

uncertainty in the mid-high frequency range. This un-

certainty block not only provides for perturbations in

the model, but is also serves to pose a proper standard

Hoo control problem. The standard Ho_ design is to

minimize tile weighted output sensitivity transfer func-

tion from disturbances to the performance outputs,

while providing robustness to the input multiplicative

uncertainty as well. Now, if the purpose of the con-

trol design was to solve this standard H¢¢ problem,

a controller could be synthesi'zed using a number of

available tools. However, here the controller has to

not only satisfy the Hoo problem, it also has to allow

for real structured uncertainties in the state matrix (to

accom|t for uncertainties in the modal frequencies and

damping). Moreover, it has to be able to accommo-

date degradations and/or faults in the actuators. In

order to accommodate tile various requirements of the

proposed control design, a Linear Matrix Inequality

(LMI) framework is used. The LMI framework offers

marly advantages 5 7

* LMI-formulated problems can be solved exactly

via convex optimization algorithms

• LMI formulations can accommodate a variety of

design specifications and constraints concurrently.

• Efficient convex algorithms are available

The Ho¢ control problem carl be formulated in an

LMI setting as follows 6

s,t.

AX + B_ + (,)7" (.)
A + A T + CTDTB T YA + 1_6 -{- (,)T

H T + FTDTB T HTy + FTI_ T

LX + E_C L + E.Dc

(.) (.)
(.) (.)

-,_I,, (.)
D_w + E,[gFw -7I_

(12)

<0

[x (.)]
< 0 (13)

_3I Y

_> 13_ (14)

where terms (,)T and (.) are implied by symmetry, ma-

trices X and Y are partition matrices related to the

Lyapunov matrix; A, /3, C, and /), are tile controller

niatrices in a nonlinearly transformed coordinates; 6 "y

is a real scalar whose minimum value denotes the Hoo

norm; and/3 is a scaling parameter used to avoid po-

tential conditioning problems for the matrix I - XY,

whose inversion is required in realizing the controller

in the physical space. Ba_., is a threshold value larger

than 1. The Ho¢ LMI problem may also be recast from

a convex minimization problem to a convex feasible so-

lution problem, as follows

s.t,

find X, Y, A, B, C, D,'7, fl

AX + +BC + (.)T (.)

+ A T + cT2_TB T YA "4- BC q- (,)T

H T + FT{)TB T HTy + FTw[3 T

LX + E_C L + E_DC

(.) (.)
(.) (.)

-,_,_ (.)
D_, + EzDFw -7I_

(15)

(16)

<0

Ix 6)]
< 0 (17)

BI Y

,<_d_. (is)

_ _4_ (19)

rain 7 (11)
x,Y,A,&_,D,-t,_

Here "Yd_ represents tile desired Ho_ norm of the

closed-loop system.
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Model Uncertainty

As mentioned earlier, there are real parametric un-

certainties in the plant state matrix which represents

uncertainties in the modal frequencies and damping.

An LMI framework is an ideal setting to deal with

such a problem. The problem is to find a controller (.4,

/), C, /)) such that the LMI problems in Eqs. (11)-

(19) are satisfied with the uncertain plant matrix A(0).

Since, matrix A(O) appears in an affine form in these

LMIs, then the LMIs would be identically satisfied for

all values of the uncertain parmneters 0 if and only

if they are satisfied on the vertices of the hypercube

formed by the lower bound and upper bound values

of Oi,i = 1,... , s. Therefore, the LMI formulation to

provide robustness against the parametric uncertain-

ties may be written as

find X, Y, A, B, C, D, % t3 (20)

s,t.

A(ee)X + aO + (,)r
,4 + AT(o_) + CTDTB T

H w + FTDTBT
LX + E_O

(')
YA(Oe) + [_C + (,)T

HTy + FT[_ T

L + E, DC

(.) (.)

(.) (.)

-7I_ (.)
D_ + E_DF_ -7I_

<0

(21)

rx (')1
< o (22)Y

7 -< 7des (23)

_ tides (24)

where 0e are the conmrs of the uncertainty hypercube.

So far, the uncertainties considered have been those

associated with the plant model. However, possible

uncertainties in the actuators, due to degradation or

failure, also need to be considered. The approach
here is to consider actuator faults or failures one at

a time. In other words, the control design considers

only individual faults or failures in the actuators and

the nominal controller must provide tolerance against

these failures. The LMI framework cazl easily accom-

modate tile one-at-a-time fault or failure approach.

This is accomplished by adding an H¢¢ LMI (similar

to Eq. (21)) for each actuator, i.e.,

40F7

Length

Mass

Inertia

1st Modal Frequency

1st Modal Damp. Ratio

2nd Modal Frequency

2nd Modal Damp. Ratio

15 m

101.25 Kg

1898.44 Kg in 2

7.29Rad/s

o.1%

20.11Rad/s

o.1%

Table 1 System Properties

A(Oe,ai)X + B(Si)O + (,)r

A + AT(Or, 4ii) + CTbrBr(ai)

Hr + Frf)rBr(ad '
LX + E£

(.)

YA(O_, 5i) +/)C + (,)T (25)
T^T ...

HTy + F_B

L + EzD

(') (')

(.) (.)

-e,7_ (.) < o

CDz,_ + EzDF_ -aTl_

where _i,i = 1,... ,mi denotes the corners of the un-

certainty hypercube associated with actuator No. "i"

fault or failure, and a is a scalar which defines the

acceptable level of performance degradation from the

fully operational system with no hardware failures. A

value of a = 1 dictates that the same level of per-

formance is required from the system with one failed

actuator as the fully operational system. Typically, a

should be chosen greater than 1.

Numerical Results

Tile proposed approach for fault-accommodating

control is applied to the control synthesis of a two-

dimensional flexible system, as shown in Figure 2. The

inertia and geometric properties of the system along

with the frequencies and damping ratios of its first

two flexible modes (used in the control synthesis) are

provided in Table 1.

Control System Hardware and Setup

As shown ill Figure 2, there are three control in-

puts available to provide fine pointing for the system.

These inputs are three reaction wheels, one at the left

end (x = 0m), one at the mid-length (x = 7.5m), and

one at the two-thirds of the length (x = 10m). It is as-

sumed that attitude measurements are available from

a set of three collocated attitude sensors. Here, sensors

and actuators dynamics are not considered, There is

an exogenous disturbance source (force disturbance) at

one third of the length (x = 5m). The performance of

the system is measured ill terms of the attitude point-

ing error at the right end (x = 15m). As mentioned
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earlier, the control desigzl is based on Hoe synthesis.

Figure 1 shows the closed-loop block diagram. A 6th-

order model of the system, which included the first two

flexible modes, were used in the control design.

The performance requirements were defined in terms

of the weighted output sensitivity transfer function

from the disturbance to the performance output. The

weighting function was chosen as Wp = _ to
(s+0.06_r)

provide good disturbance rejection at low to mid fre-

quencies. Uncertainty in the system model in the form

of unstructured input multiplicative was used. The

weighting function, used to scale or distribute tile un-

certainty, was chosen as W_ = _ to emphasize

model uncertainty in the high frequency range. As for

the structured plant uncertainty, a 5% uncertainty in

the modal frequency of the first two modes were as-

sumed.

To accommodate the potential uncertainties in the

actuators due to degradation or failure, additional dy-

namics (in the form of a fictitious actuator dynamics)

were augmented with the plant dynamics. The aug-

mented dynamics were as follows for each control input

channel.

Aa = -100; Ba = 100;C_ = 1;D_ = 0 (26)

Uncertainties 5x and 6z were considered for tile matri-

ces B_ and A_, respectively, to account for the poten-

tial actuator fault/failure. 61 was chosen to vary from

0 to 1 to allow for a variation from nominal perfor-

mance to total failure, and (f2 was chosen to vary from

1 to 10. The nominal augmentation and its associ-

ated uncertainties were chosen such that they provide

a range of perturbations in the system due to actua-

tor degradation/failure. These perturbations run the

gamut from full actuator operation (with no impact

on plant dynamics) to the total failure of any one ac-

tuator, with potential gain loss and/or phase delays

in between. For these failures the design required the

system to remain stable, but allowed an increase of up

to a factor of five in H_ norm constraint, i.e., a = 5.

Control Synthesis

The LMI framework, described in the previous sec-

tion, was used to synthesize a fault-acconnnodating

controller. The controller was to provide a desired H_c

norm performance for the weighted output sensitivity

transfer function from disturbances to the performance

output, while tolerating uncertainties in the modal fre-

quencies of the first two flexible modes, and allowing

for degradation or total failure of any one of the three

reaction wheels. As indicated earlier, these require-

meats reduce to tile solution of the system of LMIs

given ill Eqs. (21)-(25). These LMIs were solved us-

ing the LMI Control Toolbox. s Tile design parameters

fld_ and 7d_ were chosen to be 1.25 and 1.0, respec-

tively. The LMI feasibility problem was solved using

the "feasp" routine of the LMI Too]box. s

50F7

The singular value plot for the resulting controlled

system is given in Figure 3. Figure 3a shows the sin-

gular values of the open and closed-loop system over

tile full path, including both performance and robust-

ness conditions. Figure 3b show performance alone,

comparing the disturbance rejection of the exogenous

disturbance for the open-loop and closed-loop system.

It is observed that the Hoe-based controller provides

good disturbance rejection at low-mid frequencies, in-

cluding the first flexible mode. However, this is not the

case above the first flexible frequencies because of the

uncertainties associated within the modal frequency

and the ramp-up of actuator input uncertainty.

To validate the robustness of the system against real

parametric uncertainties the controller was applied to

a set of plant models which had randomly chosen fre-

quency errors within the 5°_ bound specified in the

design. A histogram of the resulting Hoo norm for

these systems is shown in Figure 4 and shows very

little variation in performance due to these errors.

In Figure 5 singular values plots are shown for the

closed-loop system subject to hard failures in each of

tile actuators. In can be seen that actuator-3 is the

most critical to maintaining performance, while the

loss actuator-1 has little impact. All cases however,

retain a level of performance as specified by the de-

sign constraints. This observation is also borne out in

the Ho¢ nornis shown in Table 2. Finally, the fault

tolerance of the controller was also demonstrated by

sinmlation. A linear simulation of the system response,

subject to band-limited white noise disturbance, was

performed for each failure case . Figure 6 shows the

system under operational conditions, and with the

failure of each actuator in turn in for 1000 second du-

rations.

Concluding Remarks

Control of flexiblesystems subject to degradation

or failureof sensors/actuators was considered. A Lin-

ear Matrix Inequality framework was developed to

synthesize Hoo-based controllers,which provide good

disturbance rejectionwhile capable of tolerating real

parameter uncertainties in the system model, as well

as potential degradation or failure of the control sys-

tem hardware. In this approach, the controller can

acconunodate faults or failures in olin sensor or actu-

ator at any given time. This is a reasonable approach

for most aerospace applications, which typically have

limited number of highly reliable components. A nu-

merical example involving tile control synttmsis for

a two-dimensional flexible system was worked out to

demonstrate tile feasibility of the proposed approach.

The results demonstrated the effectiveness of the fault

accommodating control strategy as well as the feasi-

bility of LMI-based approach for multi-objective syn-

thesis problems.
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Case IIG,wllo_ IIGpdll_

Fully Operational 0.482 0.069
Hard Failure, Actuator-1 0.479 0.064

Hard Failure, Actuator-2 0.551 0.156
Hard Failure, Actuator-3 1.993 0.989

Table 2 Ho_ norms for coupled Robustness and

Performance path, Gzw, and for performance path

alone, Gpd, under single-fault hard failures.

Disturbance _

Noise

Fig. 1 Block diagram of the H_ problem

UI , d
1

U 3

Fig. 2 Schematic of the two-dlmensional flexible

system
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Fig. 3 Maximum singular value plot for open and

nominal closed loop system.
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Fig. 5 Maximum singular value plot for closed-

loop system under different actuator failures
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Fig. 4 Variation of H_o norm with 5_ errors in

natural frequency, 500 cases
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Fig. 6 Time response of pointing under distur-

bance for four conditions: Operational, Act-1 Fail-

ure, Act-2 Failure, and Act-3 Failure
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